Hmdb loader
Record Information
Version5.0
StatusDetected and Quantified
Creation Date2006-05-22 14:17:32 UTC
Update Date2022-10-24 19:44:10 UTC
HMDB IDHMDB0002014
Secondary Accession Numbers
  • HMDB02014
Metabolite Identification
Common Namecis-5-Tetradecenoylcarnitine
Descriptioncis-5-Tetradecenoylcarnitine is an acylcarnitine. More specifically, it is an cis-5-tetradecenoic acid ester of carnitine. Acylcarnitines were first discovered more than 70 year ago (PMID: 13825279 ). It is believed that there are more than 1000 types of acylcarnitines in the human body. The general role of acylcarnitines is to transport acyl-groups (organic acids and fatty acids) from the cytoplasm into the mitochondria so that they can be broken down to produce energy.  This process is known as beta-oxidation. According to a recent review (PMID: 35710135 ), acylcarnitines (ACs) can be classified into 9 different categories depending on the type and size of their acyl-group: 1) short-chain ACs; 2) medium-chain ACs; 3) long-chain ACs; 4) very long-chain ACs; 5) hydroxy ACs; 6) branched chain ACs; 7) unsaturated ACs; 8) dicarboxylic ACs and 9) miscellaneous ACs. Short-chain ACs have acyl-groups with two to five carbons (C2-C5), medium-chain ACs have acyl-groups with six to thirteen carbons (C6-C13), long-chain ACs have acyl-groups with fourteen to twenty once carbons (C14-C21) and very long-chain ACs have acyl groups with more than 22 carbons. cis-5-Tetradecenoylcarnitine is therefore classified as a long chain AC. As a long-chain acylcarnitine cis-5-Tetradecenoylcarnitine is generally formed through esterification with long-chain fatty acids obtained from the diet. The main function of most long-chain acylcarnitines is to ensure long chain fatty acid transport into the mitochondria (PMID: 22804748 ). Altered levels of long-chain acylcarnitines can serve as useful markers for inherited disorders of long-chain fatty acid metabolism. In particular cis-5-Tetradecenoylcarnitine is elevated in the blood or plasma of individuals with very long-chain acyl-CoA dehydrogenase (VLACD) deficiency (PMID: 25843429 , PMID: 19327992 , PMID: 11433098 , PMID: 18670371 , PMID: 12828998 ), trifunctional protein (mitochondrial long-chain ketoacyl-coa thiolase) deficiency (PMID: 16423905 ), mitochondrial dysfunction in diabetes patients (PMID: 28726959 ), acadvl acyl-coa dehydrogenase very long chain deficiency (PMID: 29491033 ), nonalcoholic fatty liver disease (NAFLD) (PMID: 27211699 ), and insulin resistance type 2 diabetes (PMID: 24358186 ). Carnitine palmitoyltransferase I (CPT I, EC:2.3.1.21) is involved in the synthesis of long-chain acylcarnitines (more than C12) on the mitochondrial outer membrane.  Elevated serum/plasma levels of long-chain acylcarnitines are not only markers for incomplete FA oxidation but also are indicators of altered carbohydrate and lipid metabolism. High serum concentrations of long-chain acylcarnitines in the postprandial or fed state are markers of insulin resistance and arise from insulin's inability to inhibit CPT-1-dependent fatty acid metabolism in muscles and the heart (PMID: 19073774 ). Increased intracellular content of long-chain acylcarnitines is thought to serve as a feedback inhibition mechanism of insulin action (PMID: 23258903 ). Defects in enzymes of the beta-oxidation pathway cause sudden, unexplained death in childhood, acute hepatic encephalopathy or liver failure, skeletal myopathy, and cardiomyopathy (PMID: 7479827 ). In healthy subjects, increased concentrations of insulin effectively inhibits long-chain acylcarnitine production. Several studies have also found increased levels of circulating long-chain acylcarnitines in chronic heart failure patients (PMID: 26796394 ). The study of acylcarnitines is an active area of research and it is likely that many novel acylcarnitines will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered. An excellent review of the current state of knowledge for acylcarnitines is available (PMID: 35710135 ).
Structure
Data?1582752223
Synonyms
ValueSource
3-[(5Z)-Tetradec-5-enoyloxy]-4-(trimethylammonio)butanoateChEBI
3-[(5Z)-Tetradec-5-enoyloxy]-4-(trimethylammonio)butanoic acidGenerator
cis-5-TetradecenoylcarnitineChEBI
Chemical FormulaC21H39NO4
Average Molecular Weight369.5387
Monoisotopic Molecular Weight369.287908741
IUPAC Name3-[(5Z)-tetradec-5-enoyloxy]-4-(trimethylazaniumyl)butanoate
Traditional Namecis-5-tetradecenoylcarnitine
CAS Registry Number835598-21-5
SMILES
CCCCCCCC\C=C/CCCC(=O)OC(CC([O-])=O)C[N+](C)(C)C
InChI Identifier
InChI=1S/C21H39NO4/c1-5-6-7-8-9-10-11-12-13-14-15-16-21(25)26-19(17-20(23)24)18-22(2,3)4/h12-13,19H,5-11,14-18H2,1-4H3/b13-12-
InChI KeyNNCBVXBBLABOCB-SEYXRHQNSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as acyl carnitines. These are organic compounds containing a fatty acid with the carboxylic acid attached to carnitine through an ester bond.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acid esters
Direct ParentAcyl carnitines
Alternative Parents
Substituents
  • Acyl-carnitine
  • Dicarboxylic acid or derivatives
  • Tetraalkylammonium salt
  • Quaternary ammonium salt
  • Carboxylic acid ester
  • Carboxylic acid salt
  • Carboxylic acid derivative
  • Carboxylic acid
  • Organic nitrogen compound
  • Organooxygen compound
  • Organonitrogen compound
  • Organic salt
  • Hydrocarbon derivative
  • Organic oxide
  • Organopnictogen compound
  • Organic oxygen compound
  • Carbonyl group
  • Amine
  • Aliphatic acyclic compound
Molecular FrameworkAliphatic acyclic compounds
External Descriptors
Ontology
Physiological effect
Disposition
ProcessNot Available
Role
Physical Properties
StateSolid
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
Water Solubility1.7e-05 g/LALOGPS
logP0.48ALOGPS
logP0.78ChemAxon
logS-7.4ALOGPS
pKa (Strongest Acidic)4.24ChemAxon
pKa (Strongest Basic)-7.1ChemAxon
Physiological Charge0ChemAxon
Hydrogen Acceptor Count3ChemAxon
Hydrogen Donor Count0ChemAxon
Polar Surface Area66.43 ŲChemAxon
Rotatable Bond Count17ChemAxon
Refractivity128.99 m³·mol⁻¹ChemAxon
Polarizability44.6 ųChemAxon
Number of Rings0ChemAxon
BioavailabilityYesChemAxon
Rule of FiveYesChemAxon
Ghose FilterYesChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleNoChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
DeepCCS[M+H]+210.2330932474
DeepCCS[M-H]-206.2130932474
DeepCCS[M-2H]-242.75430932474
DeepCCS[M+Na]+219.04530932474
AllCCS[M+H]+204.232859911
AllCCS[M+H-H2O]+202.032859911
AllCCS[M+NH4]+206.232859911
AllCCS[M+Na]+206.832859911
AllCCS[M-H]-199.332859911
AllCCS[M+Na-2H]-201.032859911
AllCCS[M+HCOO]-202.932859911

Predicted Retention Times

Underivatized

Chromatographic MethodRetention TimeReference
Measured using a Waters Acquity ultraperformance liquid chromatography (UPLC) ethylene-bridged hybrid (BEH) C18 column (100 mm × 2.1 mm; 1.7 μmparticle diameter). Predicted by Afia on May 17, 2022. Predicted by Afia on May 17, 2022.8.08 minutes32390414
Predicted by Siyang on May 30, 202218.0762 minutes33406817
Predicted by Siyang using ReTip algorithm on June 8, 20222.95 minutes32390414
AjsUoB = Accucore 150 Amide HILIC with 10mM Ammonium Formate, 0.1% Formic Acid61.2 seconds40023050
Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid2583.4 seconds40023050
Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid229.0 seconds40023050
Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid221.9 seconds40023050
Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid181.5 seconds40023050
RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid421.9 seconds40023050
Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid795.9 seconds40023050
BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid628.2 seconds40023050
HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate)527.6 seconds40023050
UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid2016.8 seconds40023050
BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid547.5 seconds40023050
UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid1984.4 seconds40023050
SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid424.8 seconds40023050
RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid467.0 seconds40023050
MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate271.0 seconds40023050
KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA119.8 seconds40023050
Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water8.3 seconds40023050

Predicted Kovats Retention Indices

Underivatized

MetaboliteSMILESKovats RI ValueColumn TypeReference
cis-5-TetradecenoylcarnitineCCCCCCCC\C=C/CCCC(=O)OC(CC([O-])=O)C[N+](C)(C)C2922.5Standard polar33892256
cis-5-TetradecenoylcarnitineCCCCCCCC\C=C/CCCC(=O)OC(CC([O-])=O)C[N+](C)(C)C2227.3Standard non polar33892256
cis-5-TetradecenoylcarnitineCCCCCCCC\C=C/CCCC(=O)OC(CC([O-])=O)C[N+](C)(C)C2441.5Semi standard non polar33892256
Spectra

GC-MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted GC-MSPredicted GC-MS Spectrum - cis-5-Tetradecenoylcarnitine GC-MS (Non-derivatized) - 70eV, Positivesplash10-00di-9210000000-d55933555203a81af3b02017-09-01Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - cis-5-Tetradecenoylcarnitine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum
Predicted GC-MSPredicted GC-MS Spectrum - cis-5-Tetradecenoylcarnitine GC-MS (Non-derivatized) - 70eV, PositiveNot Available2021-10-12Wishart LabView Spectrum

MS/MS Spectra

Spectrum TypeDescriptionSplash KeyDeposition DateSourceView
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 10V, Positive-QTOFsplash10-0fkc-0729000000-b7724178fd672abeda7c2017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 20V, Positive-QTOFsplash10-0006-1900000000-a2f60fad8c99a570c7b02017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 40V, Positive-QTOFsplash10-02fx-4900000000-6ae1e898595b8e8b61f52017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 10V, Negative-QTOFsplash10-014i-0029000000-a5108e2a8a5c949c79422017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 20V, Negative-QTOFsplash10-0aor-1289000000-351e00d1ad0b6a3015e92017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 40V, Negative-QTOFsplash10-0a6u-7590000000-8eeb0dac52aa2c1d62462017-09-01Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 10V, Positive-QTOFsplash10-00di-0009000000-1a5965dc435463ee085f2021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 20V, Positive-QTOFsplash10-0079-9005000000-84dcf946c3b41ee8ec832021-09-22Wishart LabView Spectrum
Predicted LC-MS/MSPredicted LC-MS/MS Spectrum - cis-5-Tetradecenoylcarnitine 40V, Positive-QTOFsplash10-000i-9000000000-e9262cbaff8cb4ad0ba62021-09-22Wishart LabView Spectrum
Biological Properties
Cellular Locations
  • Extracellular
  • Membrane
Biospecimen Locations
  • Blood
  • Urine
Tissue LocationsNot Available
Pathways
Normal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified0.032 (0.005-0.097) uMChildren (1-13 years old)BothNormal details
BloodDetected and Quantified0.06 +/- 0.03 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified0.020-0.240 uMAdult (>18 years old)Both
Normal
details
BloodDetected and Quantified0.020-0.240 uMAdult (>18 years old)BothNormal details
BloodDetected and Quantified<1 uMNewborn (0-30 days old)Not SpecifiedNormal details
BloodDetected and Quantified0.08 (0.06-0.11) uMInfant (0-1 year old)Not Available
Normal
details
BloodDetected and Quantified0.03 (0.03-0.04) uMNewborn (0-30 days old)Not Available
Normal
details
BloodDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
UrineDetected and Quantified0.0038 +/- 0.0015 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Normal
    • Analysis of 30 no...
details
UrineDetected but not QuantifiedNot QuantifiedAdult (>18 years old)BothNormal details
Abnormal Concentrations
BiospecimenStatusValueAgeSexConditionReferenceDetails
BloodDetected and Quantified5.223 (2.658-7.891) uMAdult (>18 years old)BothVery long-chain acyl-CoA dehydrogenase deficiency (vLCAD) details
BloodDetected and Quantified0.1014 (0.0757) uMAdult (>18 years old)FemalePregnancy with fetus having congenital heart defect details
BloodDetected and Quantified0.122 +/- 0.042 uMChildren (1-13 years old)Both
Obesity
    • Metabolomics reve...
details
BloodDetected and Quantified0.131 +/- 0.048 uMChildren (1-13 years old)Both
Obesity
    • Metabolomics reve...
details
UrineDetected and Quantified0.0039 +/- 0.0013 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Eosinophilic esophagitis
    • Analysis of 30 no...
details
UrineDetected and Quantified0.0089 +/- 0.0114 umol/mmol creatinineChildren (1 - 13 years old)Not Specified
Gastroesophageal reflux disease
    • Analysis of 30 no...
details
Associated Disorders and Diseases
Disease References
Very Long Chain Acyl-CoA Dehydrogenase Deficiency
  1. Costa CG, Struys EA, Bootsma A, ten Brink HJ, Dorland L, Tavares de Almeida I, Duran M, Jakobs C: Quantitative analysis of plasma acylcarnitines using gas chromatography chemical ionization mass fragmentography. J Lipid Res. 1997 Jan;38(1):173-82. [PubMed:9034211 ]
Obesity
  1. Simone Wahl, Christina Holzapfel, Zhonghao Yu, Michaela Breier, Ivan Kondofersky, Christiane Fuchs, Paula Singmann, Cornelia Prehn, Jerzy Adamski, Harald Grallert, Thomas Illig, Rui Wang-Sattler, Thomas Reinehr (2013). Metabolomics reveals determinants of weight loss during lifestyle intervention in obese children. Metabolomics.
Eosinophilic esophagitis
  1. Slae, M., Huynh, H., Wishart, D.S. (2014). Analysis of 30 normal pediatric urine samples via NMR spectroscopy (unpublished work). NA.
Associated OMIM IDs
  • 201475 (Very Long Chain Acyl-CoA Dehydrogenase Deficiency)
  • 601665 (Obesity)
  • 610247 (Eosinophilic esophagitis)
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDFDB022796
KNApSAcK IDNot Available
Chemspider ID17216151
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN ID6437
PubChem Compound22833575
PDB IDNot Available
ChEBI ID73060
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDMDB00000366
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Strauss AW, Powell CK, Hale DE, Anderson MM, Ahuja A, Brackett JC, Sims HF: Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10496-500. [PubMed:7479827 ]
  2. Shigematsu Y, Hirano S, Hata I, Tanaka Y, Sudo M, Tajima T, Sakura N, Yamaguchi S, Takayanagi M: Selective screening for fatty acid oxidation disorders by tandem mass spectrometry: difficulties in practical discrimination. J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Jul 15;792(1):63-72. [PubMed:12828998 ]
  3. Wood JC, Magera MJ, Rinaldo P, Seashore MR, Strauss AW, Friedman A: Diagnosis of very long chain acyl-dehydrogenase deficiency from an infant's newborn screening card. Pediatrics. 2001 Jul;108(1):E19. [PubMed:11433098 ]
  4. Archie JP Jr: Splenic artery stump back pressure. Am Surg. 1992 Aug;58(8):504-5. [PubMed:1642390 ]
  5. FRITZ IB: Action of carnitine on long chain fatty acid oxidation by liver. Am J Physiol. 1959 Aug;197:297-304. doi: 10.1152/ajplegacy.1959.197.2.297. [PubMed:13825279 ]
  6. Reuter SE, Evans AM: Carnitine and acylcarnitines: pharmacokinetic, pharmacological and clinical aspects. Clin Pharmacokinet. 2012 Sep 1;51(9):553-72. doi: 10.1007/BF03261931. [PubMed:22804748 ]
  7. Bruce CR, Hoy AJ, Turner N, Watt MJ, Allen TL, Carpenter K, Cooney GJ, Febbraio MA, Kraegen EW: Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes. 2009 Mar;58(3):550-8. doi: 10.2337/db08-1078. Epub 2008 Dec 10. [PubMed:19073774 ]
  8. Schooneman MG, Vaz FM, Houten SM, Soeters MR: Acylcarnitines: reflecting or inflicting insulin resistance? Diabetes. 2013 Jan;62(1):1-8. doi: 10.2337/db12-0466. [PubMed:23258903 ]
  9. Ahmad T, Kelly JP, McGarrah RW, Hellkamp AS, Fiuzat M, Testani JM, Wang TS, Verma A, Samsky MD, Donahue MP, Ilkayeva OR, Bowles DE, Patel CB, Milano CA, Rogers JG, Felker GM, O'Connor CM, Shah SH, Kraus WE: Prognostic Implications of Long-Chain Acylcarnitines in Heart Failure and Reversibility With Mechanical Circulatory Support. J Am Coll Cardiol. 2016 Jan 26;67(3):291-9. doi: 10.1016/j.jacc.2015.10.079. [PubMed:26796394 ]
  10. Abu Bakar MH, Sarmidi MR: Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects. Mol Biosyst. 2017 Aug 22;13(9):1838-1853. doi: 10.1039/c7mb00333a. [PubMed:28726959 ]
  11. Hisahara S, Matsushita T, Furuyama H, Tajima G, Shigematsu Y, Imai T, Shimohama S: A heterozygous missense mutation in adolescent-onset very long-chain acyl-CoA dehydrogenase deficiency with exercise-induced rhabdomyolysis. Tohoku J Exp Med. 2015 Apr;235(4):305-10. doi: 10.1620/tjem.235.305. [PubMed:25843429 ]
  12. Laforet P, Acquaviva-Bourdain C, Rigal O, Brivet M, Penisson-Besnier I, Chabrol B, Chaigne D, Boespflug-Tanguy O, Laroche C, Bedat-Millet AL, Behin A, Delevaux I, Lombes A, Andresen BS, Eymard B, Vianey-Saban C: Diagnostic assessment and long-term follow-up of 13 patients with Very Long-Chain Acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009 May;19(5):324-9. doi: 10.1016/j.nmd.2009.02.007. Epub 2009 Mar 26. [PubMed:19327992 ]
  13. Tajima G, Sakura N, Shirao K, Okada S, Tsumura M, Nishimura Y, Ono H, Hasegawa Y, Hata I, Naito E, Yamaguchi S, Shigematsu Y, Kobayashi M: Development of a new enzymatic diagnosis method for very-long-chain Acyl-CoA dehydrogenase deficiency by detecting 2-hexadecenoyl-CoA production and its application in tandem mass spectrometry-based selective screening and newborn screening in Japan. Pediatr Res. 2008 Dec;64(6):667-72. doi: 10.1203/PDR.0b013e318187cc44. [PubMed:18670371 ]
  14. Das AM, Illsinger S, Lucke T, Hartmann H, Ruiter JP, Steuerwald U, Waterham HR, Duran M, Wanders RJ: Isolated mitochondrial long-chain ketoacyl-CoA thiolase deficiency resulting from mutations in the HADHB gene. Clin Chem. 2006 Mar;52(3):530-4. doi: 10.1373/clinchem.2005.062000. Epub 2006 Jan 19. [PubMed:16423905 ]
  15. Lepori V, Muhlhause F, Sewell AC, Jagannathan V, Janzen N, Rosati M, Alves de Sousa FMM, Tschopp A, Schupbach G, Matiasek K, Tipold A, Leeb T, Kornberg M: A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy. G3 (Bethesda). 2018 May 4;8(5):1545-1554. doi: 10.1534/g3.118.200084. [PubMed:29491033 ]
  16. Chen Y, Li C, Liu L, Guo F, Li S, Huang L, Sun C, Feng R: Serum metabonomics of NAFLD plus T2DM based on liquid chromatography-mass spectrometry. Clin Biochem. 2016 Sep;49(13-14):962-6. doi: 10.1016/j.clinbiochem.2016.05.016. Epub 2016 May 20. [PubMed:27211699 ]
  17. Mai M, Tonjes A, Kovacs P, Stumvoll M, Fiedler GM, Leichtle AB: Serum levels of acylcarnitines are altered in prediabetic conditions. PLoS One. 2013 Dec 16;8(12):e82459. doi: 10.1371/journal.pone.0082459. eCollection 2013. [PubMed:24358186 ]
  18. Dambrova M, Makrecka-Kuka M, Kuka J, Vilskersts R, Nordberg D, Attwood MM, Smesny S, Sen ZD, Guo AC, Oler E, Tian S, Zheng J, Wishart DS, Liepinsh E, Schioth HB: Acylcarnitines: Nomenclature, Biomarkers, Therapeutic Potential, Drug Targets, and Clinical Trials. Pharmacol Rev. 2022 Jul;74(3):506-551. doi: 10.1124/pharmrev.121.000408. [PubMed:35710135 ]