Hmdb loader
Record Information
Version5.0
StatusPredicted
Creation Date2021-09-21 23:03:21 UTC
Update Date2021-10-01 16:54:15 UTC
HMDB IDHMDB0301332
Secondary Accession NumbersNone
Metabolite Identification
Common Name(9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA
Description(9e,11e,15z)-9-hydroxyoctadeca-9,11,15-trienoyl-coa is an acyl-CoA or acyl-coenzyme A. More specifically, it is a (9E_11E_15Z)-9-hydroxyoctadeca-9_11_15-trienoic acid thioester of coenzyme A. (9e,11e,15z)-9-hydroxyoctadeca-9,11,15-trienoyl-coa is an acyl-CoA with 18 fatty acid group as the acyl moiety attached to coenzyme A. Coenzyme A was discovered in 1946 by Fritz Lipmann (Journal of Biological Chemistry (1946) 162 (3): 743–744) and its structure was determined in the early 1950s at the Lister Institute in London. Coenzyme A is a complex, thiol-containing molecule that is naturally synthesized from pantothenate (vitamin B5), which is found in various foods such as meat, vegetables, cereal grains, legumes, eggs, and milk. More specifically, coenzyme A (CoASH or CoA) consists of a beta-mercaptoethylamine group linked to the vitamin pantothenic acid (B5) through an amide linkage and 3'-phosphorylated ADP. Coenzyme A is synthesized in a five-step process that requires four molecules of ATP, pantothenate and cysteine. It is believed that there are more than 1100 types of acyl-CoA’s in the human body, which also corresponds to the number of acylcarnitines in the human body. Acyl-CoAs exists in all living species, ranging from bacteria to plants to humans. The general role of acyl-CoA’s is to assist in transferring fatty acids from the cytoplasm to mitochondria. This process facilitates the production of fatty acids in cells, which are essential in cell membrane structure. Acyl-CoA's are also susceptible to beta oxidation, forming, ultimately, acetyl-CoA. Acetyl-CoA can enter the citric acid cycle, eventually forming several equivalents of ATP. In this way, fats are converted to ATP -- or biochemical energy. Acyl-CoAs can be classified into 9 different categories depending on the size of their acyl-group: 1) short-chain acyl-CoAs; 2) medium-chain acyl-CoAs; 3) long-chain acyl-CoAs; and 4) very long-chain acyl-CoAs; 5) hydroxy acyl-CoAs; 6) branched chain acyl-CoAs; 7) unsaturated acyl-CoAs; 8) dicarboxylic acyl-CoAs and 9) miscellaneous acyl-CoAs. Short-chain acyl-CoAs have acyl-groups with two to four carbons (C2-C4), medium-chain acyl-CoAs have acyl-groups with five to eleven carbons (C5-C11), long-chain acyl-CoAs have acyl-groups with twelve to twenty carbons (C12-C20) while very long-chain acyl-CoAs have acyl groups with more than 20 carbons. (9e,11e,15z)-9-hydroxyoctadeca-9,11,15-trienoyl-coa is therefore classified as a long chain acyl-CoA. The oxidative degradation of fatty acids is a two-step process, catalyzed by acyl-CoA synthetase/synthase. Fatty acids are first converted to their acyl phosphate, the precursor to acyl-CoA. The latter conversion is mediated by acyl-CoA synthase. Three types of acyl-CoA synthases are employed, depending on the chain length of the fatty acid. (9e,11e,15z)-9-hydroxyoctadeca-9,11,15-trienoyl-coa, being a long chain acyl-CoA is a substrate for long chain acyl-CoA synthase. The second step of fatty acid degradation is beta oxidation. Beta oxidation occurs in mitochondria and, in the case of very long chain acyl-CoAs, the peroxisome. After its formation in the cytosol, (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA is transported into the mitochondria, the locus of beta oxidation. Transport of (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA into the mitochondria requires carnitine palmitoyltransferase 1 (CPT1), which converts (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA into (9E_11E_15Z)-9-hydroxyoctadeca-9_11_15-trienoylcarnitine, which gets transported into the mitochondrial matrix. Once in the matrix, (9E_11E_15Z)-9-hydroxyoctadeca-9_11_15-trienoylcarnitine is converted back to (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA by CPT2, whereupon beta-oxidation can begin. Beta oxidation of (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA occurs in four steps. First, since (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA is a long chain acyl-CoA it is the substrate for a long chain acyl-CoA dehydrogenase, which catalyzes dehydrogenation of (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA, creating a double bond between the alpha and beta carbons. FAD is the hydrogen acceptor, yielding FADH2. Second, Enoyl-CoA hydrase catalyzes the addition of water across the newly formed double bond to make an alcohol. Third, 3-hydroxyacyl-CoA dehydrogenase oxidizes the alcohol group to a ketone and NADH is produced from NAD+. Finally, Thiolase cleaves between the alpha carbon and ketone to release one molecule of acetyl-CoA and a new acyl-CoA which is now 2 carbons shorter. This four-step process repeats until (9E,11E,15Z)-9-hydroxyoctadeca-9,11,15-trienoyl-CoA has had all its carbons removed from the chain, leaving only acetyl-CoA. Beta oxidation, as well as alpha-oxidation, also occurs in the peroxisome. The peroxisome handles beta oxidation of fatty acids that have more than 20 carbons in their chain because the peroxisome contains very-long-chain Acyl-CoA synthetases and dehydrogenases. The heart primarily metabolizes fat for energy and Acyl-CoA metabolism has been identified as a critical molecule in early-stage heart muscle pump failure. Cellular acyl-CoA content also correlates with insulin resistance, suggesting that it can mediate lipotoxicity in non-adipose tissues. Acyl-CoA: diacylglycerol acyltransferase (DGAT) plays an important role in energy metabolism on account of key enzyme in triglyceride biosynthesis. The study of acyl-CoAs is an active area of research and it is likely that many novel acyl-CoAs will be discovered in the coming years. It is also likely that many novel roles in health and disease will be uncovered for these molecules.
Structure
Thumb
Synonyms
ValueSource
4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(9-hydroxyoctadeca-9,11,15-trienoyl)sulfanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidateHMDB
4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(9-hydroxyoctadeca-9,11,15-trienoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidateHMDB
4-({[({[5-(6-amino-9H-purin-9-yl)-4-hydroxy-3-(phosphonooxy)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)-2-hydroxy-N-[2-({2-[(9-hydroxyoctadeca-9,11,15-trienoyl)sulphanyl]ethyl}-C-hydroxycarbonimidoyl)ethyl]-3,3-dimethylbutanimidic acidHMDB
Chemical FormulaC39H64N7O18P3S
Average Molecular Weight1043.95
Monoisotopic Molecular Weight1043.324140417
IUPAC Name{[5-(6-amino-9H-purin-9-yl)-4-hydroxy-2-({[hydroxy({[hydroxy(3-hydroxy-3-{[2-({2-[(9-hydroxyoctadeca-9,11,15-trienoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy)phosphoryl]oxy})phosphoryl]oxy}methyl)oxolan-3-yl]oxy}phosphonic acid
Traditional Name[5-(6-aminopurin-9-yl)-4-hydroxy-2-({[hydroxy([hydroxy(3-hydroxy-3-{[2-({2-[(9-hydroxyoctadeca-9,11,15-trienoyl)sulfanyl]ethyl}carbamoyl)ethyl]carbamoyl}-2,2-dimethylpropoxy)phosphoryl]oxy)phosphoryl]oxy}methyl)oxolan-3-yl]oxyphosphonic acid
CAS Registry NumberNot Available
SMILES
CCC=CCCC=CC=C(O)CCCCCCCC(=O)SCCNC(=O)CCNC(=O)C(O)C(C)(C)COP(O)(=O)OP(O)(=O)OCC1OC(C(O)C1OP(O)(O)=O)N1C=NC2=C1N=CN=C2N
InChI Identifier
InChI=1S/C39H64N7O18P3S/c1-4-5-6-7-8-10-13-16-27(47)17-14-11-9-12-15-18-30(49)68-22-21-41-29(48)19-20-42-37(52)34(51)39(2,3)24-61-67(58,59)64-66(56,57)60-23-28-33(63-65(53,54)55)32(50)38(62-28)46-26-45-31-35(40)43-25-44-36(31)46/h5-6,10,13,16,25-26,28,32-34,38,47,50-51H,4,7-9,11-12,14-15,17-24H2,1-3H3,(H,41,48)(H,42,52)(H,56,57)(H,58,59)(H2,40,43,44)(H2,53,54,55)
InChI KeySJZQZQQYALXNGL-UHFFFAOYSA-N
Chemical Taxonomy
Description Belongs to the class of organic compounds known as long-chain fatty acyl coas. These are acyl CoAs where the group acylated to the coenzyme A moiety is a long aliphatic chain of 13 to 21 carbon atoms.
KingdomOrganic compounds
Super ClassLipids and lipid-like molecules
ClassFatty Acyls
Sub ClassFatty acyl thioesters
Direct ParentLong-chain fatty acyl CoAs
Alternative Parents
Substituents
  • Coenzyme a or derivatives
  • Purine ribonucleoside diphosphate
  • Purine ribonucleoside bisphosphate
  • Purine ribonucleoside 3',5'-bisphosphate
  • Ribonucleoside 3'-phosphate
  • Pentose-5-phosphate
  • Pentose phosphate
  • N-glycosyl compound
  • Glycosyl compound
  • Beta amino acid or derivatives
  • Pentose monosaccharide
  • Organic pyrophosphate
  • Monosaccharide phosphate
  • 6-aminopurine
  • Purine
  • Imidazopyrimidine
  • Monoalkyl phosphate
  • Aminopyrimidine
  • Imidolactam
  • Alkyl phosphate
  • Pyrimidine
  • Phosphoric acid ester
  • Organic phosphoric acid derivative
  • N-substituted imidazole
  • N-acyl-amine
  • Monosaccharide
  • Fatty amide
  • Heteroaromatic compound
  • Tetrahydrofuran
  • Imidazole
  • Azole
  • Carbothioic s-ester
  • Thiocarboxylic acid ester
  • Secondary carboxylic acid amide
  • Secondary alcohol
  • Carboxamide group
  • Amino acid or derivatives
  • Oxacycle
  • Azacycle
  • Organoheterocyclic compound
  • Sulfenyl compound
  • Thiocarboxylic acid or derivatives
  • Enol
  • Carboxylic acid derivative
  • Organic nitrogen compound
  • Organic oxygen compound
  • Organopnictogen compound
  • Organic oxide
  • Hydrocarbon derivative
  • Primary amine
  • Organosulfur compound
  • Organooxygen compound
  • Organonitrogen compound
  • Carbonyl group
  • Amine
  • Alcohol
  • Aromatic heteropolycyclic compound
Molecular FrameworkAromatic heteropolycyclic compounds
External DescriptorsNot Available
Ontology
Physiological effectNot Available
DispositionNot Available
ProcessNot Available
RoleNot Available
Physical Properties
StateNot Available
Experimental Molecular Properties
PropertyValueReference
Melting PointNot AvailableNot Available
Boiling PointNot AvailableNot Available
Water SolubilityNot AvailableNot Available
LogPNot AvailableNot Available
Experimental Chromatographic PropertiesNot Available
Predicted Molecular Properties
PropertyValueSource
logP2.26ALOGPS
logP-0.43ChemAxon
logS-3ALOGPS
pKa (Strongest Acidic)0.82ChemAxon
pKa (Strongest Basic)4.01ChemAxon
Physiological Charge-4ChemAxon
Hydrogen Acceptor Count18ChemAxon
Hydrogen Donor Count10ChemAxon
Polar Surface Area383.86 ŲChemAxon
Rotatable Bond Count33ChemAxon
Refractivity251.25 m³·mol⁻¹ChemAxon
Polarizability103.83 ųChemAxon
Number of Rings3ChemAxon
BioavailabilityNoChemAxon
Rule of FiveNoChemAxon
Ghose FilterNoChemAxon
Veber's RuleNoChemAxon
MDDR-like RuleYesChemAxon
Predicted Chromatographic Properties

Predicted Collision Cross Sections

PredictorAdduct TypeCCS Value (Å2)Reference
AllCCS[M+H]+298.4332859911
AllCCS[M+H-H2O]+298.99632859911
AllCCS[M+Na]+297.69732859911
AllCCS[M+NH4]+297.86632859911
AllCCS[M-H]-308.63632859911
AllCCS[M+Na-2H]-314.82532859911
AllCCS[M+HCOO]-321.54132859911
DeepCCS[M+H]+257.88230932474
DeepCCS[M-H]-256.05730932474
DeepCCS[M-2H]-289.78330932474
DeepCCS[M+Na]+264.35130932474

Predicted Retention Times

Underivatized

Chromatographic MethodRetention TimeReference
Predicted by Siyang on May 30, 202214.6623 minutes33406817
Predicted by Siyang using ReTip algorithm on June 8, 20225.48 minutes32390414
Fem_Long = Waters ACQUITY UPLC HSS T3 C18 with Water:MeOH and 0.1% Formic Acid2816.9 seconds40023050
Fem_Lipids = Ascentis Express C18 with (60:40 water:ACN):(90:10 IPA:ACN) and 10mM NH4COOH + 0.1% Formic Acid133.4 seconds40023050
Life_Old = Waters ACQUITY UPLC BEH C18 with Water:(20:80 acetone:ACN) and 0.1% Formic Acid177.1 seconds40023050
Life_New = RP Waters ACQUITY UPLC HSS T3 C18 with Water:(30:70 MeOH:ACN) and 0.1% Formic Acid166.3 seconds40023050
RIKEN = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid175.5 seconds40023050
Eawag_XBridgeC18 = XBridge C18 3.5u 2.1x50 mm with Water:MeOH and 0.1% Formic Acid534.4 seconds40023050
BfG_NTS_RP1 =Agilent Zorbax Eclipse Plus C18 (2.1 mm x 150 mm, 3.5 um) with Water:ACN and 0.1% Formic Acid605.5 seconds40023050
HILIC_BDD_2 = Merck SeQuant ZIC-HILIC with ACN(0.1% formic acid):water(16 mM ammonium formate)913.2 seconds40023050
UniToyama_Atlantis = RP Waters Atlantis T3 (2.1 x 150 mm, 5 um) with ACN:Water and 0.1% Formic Acid1111.6 seconds40023050
BDD_C18 = Hypersil Gold 1.9µm C18 with Water:ACN and 0.1% Formic Acid664.2 seconds40023050
UFZ_Phenomenex = Kinetex Core-Shell C18 2.6 um, 3.0 x 100 mm, Phenomenex with Water:MeOH and 0.1% Formic Acid962.4 seconds40023050
SNU_RIKEN_POS = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid413.4 seconds40023050
RPMMFDA = Waters ACQUITY UPLC BEH C18 with Water:ACN and 0.1% Formic Acid332.7 seconds40023050
MTBLS87 = Merck SeQuant ZIC-pHILIC column with ACN:Water and :ammonium carbonate346.7 seconds40023050
KI_GIAR_zic_HILIC_pH2_7 = Merck SeQuant ZIC-HILIC with ACN:Water and 0.1% FA124.7 seconds40023050
Meister zic-pHILIC pH9.3 = Merck SeQuant ZIC-pHILIC column with ACN:Water 5mM NH4Ac pH9.3 and 5mM ammonium acetate in water16.6 seconds40023050

Predicted Kovats Retention Indices

Not Available
Spectra
Biological Properties
Cellular LocationsNot Available
Biospecimen LocationsNot Available
Tissue LocationsNot Available
Pathways
Normal Concentrations
Not Available
Abnormal Concentrations
Not Available
Associated Disorders and Diseases
Disease ReferencesNone
Associated OMIM IDsNone
DrugBank IDNot Available
Phenol Explorer Compound IDNot Available
FooDB IDNot Available
KNApSAcK IDNot Available
Chemspider IDNot Available
KEGG Compound IDNot Available
BioCyc IDNot Available
BiGG IDNot Available
Wikipedia LinkNot Available
METLIN IDNot Available
PubChem CompoundNot Available
PDB IDNot Available
ChEBI IDNot Available
Food Biomarker OntologyNot Available
VMH IDNot Available
MarkerDB IDNot Available
Good Scents IDNot Available
References
Synthesis ReferenceNot Available
Material Safety Data Sheet (MSDS)Not Available
General References
  1. Abe T, Fujino T, Fukuyama R, Minoshima S, Shimizu N, Toh H, Suzuki H, Yamamoto T: Human long-chain acyl-CoA synthetase: structure and chromosomal location. J Biochem. 1992 Jan;111(1):123-8. [PubMed:1607358 ]
  2. Wishart DS, Li C, Marcu A, Badran H, Pon A, Budinski Z, Patron J, Lipton D, Cao X, Oler E, Li K, Paccoud M, Hong C, Guo AC, Chan C, Wei W, Ramirez-Gaona M: PathBank: a comprehensive pathway database for model organisms. Nucleic Acids Res. 2020 Jan 8;48(D1):D470-D478. doi: 10.1093/nar/gkz861. [PubMed:31602464 ]